The NG2 Proteoglycan Protects Oligodendrocyte Precursor Cells against Oxidative Stress via Interaction with OMI/HtrA2

نویسندگان

  • Frank Maus
  • Dominik Sakry
  • Fabien Binamé
  • Khalad Karram
  • Krishnaraj Rajalingam
  • Colin Watts
  • Richard Heywood
  • Rejko Krüger
  • Judith Stegmüller
  • Hauke B. Werner
  • Klaus-Armin Nave
  • Eva-Maria Krämer-Albers
  • Jacqueline Trotter
  • Ken Arai
چکیده

The NG2 proteoglycan is characteristically expressed by oligodendrocyte progenitor cells (OPC) and also by aggressive brain tumours highly resistant to chemo- and radiation therapy. Oligodendrocyte-lineage cells are particularly sensitive to stress resulting in cell death in white matter after hypoxic or ischemic insults of premature infants and destruction of OPC in some types of Multiple Sclerosis lesions. Here we show that the NG2 proteoglycan binds OMI/HtrA2, a mitochondrial serine protease which is released from damaged mitochondria into the cytosol in response to stress. In the cytosol, OMI/HtrA2 initiates apoptosis by proteolytic degradation of anti-apoptotic factors. OPC in which NG2 has been downregulated by siRNA, or OPC from the NG2-knockout mouse show an increased sensitivity to oxidative stress evidenced by increased cell death. The proapoptotic protease activity of OMI/HtrA2 in the cytosol can be reduced by the interaction with NG2. Human glioma expressing high levels of NG2 are less sensitive to oxidative stress than those with lower NG2 expression and reducing NG2 expression by siRNA increases cell death in response to oxidative stress. Binding of NG2 to OMI/HtrA2 may thus help protect cells against oxidative stress-induced cell death. This interaction is likely to contribute to the high chemo- and radioresistance of glioma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A light and electron microscopic study of NG2 chondroitin sulfate proteoglycan-positive oligodendrocyte precursor cells in the normal and kainate-lesioned rat hippocampus.

The adult brain contains a large population of oligodendrocyte precursor cells that can be identified using antibodies against the NG2 chondroitin sulfate proteoglycan. The functions of this newly recognized class of glial cells in the normal or pathological brain are not well understood. To begin to elucidate these functions, we have examined the morphology and distribution of oligodendrocyte ...

متن کامل

Mpv17l protects against mitochondrial oxidative stress and apoptosis by activation of Omi/HtrA2 protease.

Cellular localization determines whether the serine protease HtrA2 exerts pro- or antiapoptotic functions. In contrast to the well-characterized proapoptotic function of cytosolic HtrA2, mechanisms underlying the mitochondrial protective role are poorly understood. Mpv17l is a transmembrane protein previously implicated in peroxisomal reactive oxygen species metabolism and a close homolog of th...

متن کامل

The NG2 proteoglycan: past insights and future prospects.

The NG2 chondroitin sulfate proteoglycan is a valuable marker for several types of incompletely-differentiated precursor cells, including oligodendrocyte progenitors in the central nervous system, developing mesenchymal cells in cartilage, muscle, and bone, and pericytes/smooth muscle cells in developing vasculature. In addition to extending our knowledge about the developmental roles of these ...

متن کامل

The inhibitor-of-apoptosis protein Bir1p protects against apoptosis in S. cerevisiae and is a substrate for the yeast homologue of Omi/HtrA2.

Inhibitor-of-apoptosis proteins (IAPs) play a crucial role in the regulation of metazoan apoptosis. IAPs are typically characterized by the presence of one to three baculovirus IAP repeat (BIR) domains that are essential for their anti-apoptotic activity. Bir1p is the sole BIR-protein in yeast and has been shown to participate in chromosome segregation events. Here, we show that Bir1p is a subs...

متن کامل

Characterization of oligodendrocyte lineage precursor cells in the mouse cerebral cortex: a confocal microscopy approach to demyelinating diseases.

The identification of stem cells resident in the adult central nervous system has redirected the focus of research into demyelinating diseases, such as multiple sclerosis, mainly affecting the brain white matter. This immunocytochemical and morphometrical study was carried out by confocal microscopy in the adult mouse cerebral cortex, with the aim of analysing, in the brain grey matter, the cha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015